Enhancement of Distribution System Performance using High Voltage Alternating Current (HVAC) Boost Converter and Fuzzy Controller

Anusha Vadde Student of the M. S. Ramaiah University of Applied Sciences, Bengaluru received the Gandhian Young Technological Innovation Award-2017 for developing a prototype Enhancement of Distribution System Performance using High Voltage Alternating Current (HVAC) Boost Converter and Fuzzy Controller. She carried her project under guidance of  V. S. N. Sitaramgupta V.

Power quality is one of the key factor in electrical systems and is taken into consideration to meet the demands of the customer. Voltage dips, momentary interruptions, harmonics and transient surges affect the reliability and quality of the power supply. The reliability and cost of any electrical system depends on the quality of the supplied power and consumed by the system. High Voltage Distribution System (HVDS) is one of the methods used to improve the quality and reliability of the distribution system through a reduction in losses, voltage fluctuations and power consumption. In HVDS, power is transmitted from the distribution station to consumer premises through the booster transformers and voltage regulators. Inrush currents or magnetizing currents and heating of insulation have been observed in transformers due to non-linear loads. As a result, the current drawn by the system is high. To overcome these effects, a step-up power converter with fuzzy controller has been designed. In this research work, High Voltage Alternating Current (HVAC) Boost Converter with fuzzy controller has been proposed for a costeffective solution to reduce distribution losses. Simulation studies have been carried out for verifying the utilities of the proposed design. The performance of the designed fuzzy logic controller is compared with that of the existing booster transformer scheme by using the simulations. It has been found that the efficiency is improved by 4%, and power losses are reduced by 1.4% to maintain the voltage fluctuations within the acceptable levels. The proposed controller in the case study of old city area in Hyderabad has been shown that revenue savings are increased by 12%.

Dr. R A Mashelkar, Chairperson, Research Advisory Committee, SRISTI and NIF, honored Anusha Vadde, Department of Electrical, Instrumentation & Related Fields, M. S. Ramaiah University of Applied Sciences, Bengaluru with the prestigious Gandhian Young Technological Innovation (GYTI) Award 2017  at a function held at Rashtrapati Bhavan on March 5.

Leave a Reply

Your email address will not be published. Required fields are marked *